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a b s t r a c t

Various approaches to extend finite element methods to non-traditional elements (general
polygons, pyramids, polyhedra, etc.) have been developed over the last decade. The con-
struction of basis functions for such elements is a challenging task and may require exten-
sive geometrical analysis. The mimetic finite difference (MFD) method works on general
polygonal meshes and has many similarities with low-order finite element methods. Both
schemes try to preserve the fundamental properties of the underlying physical and math-
ematical models. The essential difference between the two schemes is that the MFD
method uses only the surface representation of discrete unknowns to build the stiffness
and mass matrices. Since no extension of basis functions inside the mesh elements is
required, practical implementation of the MFD method is simple for polygonal meshes that
may include degenerate and non-convex elements. In this article, we present a new MFD
method for the Stokes problem on arbitrary polygonal meshes and analyze its stability.
The method is developed for the general case of tensor coefficients, which allows us to
apply it to a linear elasticity problem, as well. Numerical experiments show, for the veloc-
ity variable, second-order convergence in a discrete L2 norm and first-order convergence in
a discrete H1 norm. For the pressure variable, first-order convergence is shown in the L2

norm.
� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Stokes flow is a type of fluid flow where advective inertial forces are small compared with viscous forces. Mathematically,
such flows are characterized by a very small Reynolds number, which is typical for microscale problems, where the velocities
and sizes of objects are small. Stokes flow is a good approximation for a number of important physical problems, such as
sedimentation, bio-suspensions, the construction of efficient fibrous filters and the development of energy efficient mi-
cro-fluidic devices (e.g. mixers).

Finite element (FE) methods form a popular class of methods for computing Stokes flows numerically. Traditionally, FE
methods rely on triangular (simplicial) and quadrilateral meshes. But in complex simulations one often encounters general
polygonal and polyhedral meshes (see e.g. [22]). In some cases these meshes are more efficient in partitioning the
computational domain. In other cases they are given as an entry point to the problem (e.g. by a data collection agent or a
. All rights reserved.
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multi-physics solver routine). The polygonal meshes can be sufficiently general. For instance, Lagrangian meshes may result
in non-convex elements due to specifics of the flow dynamics. In the geosciences, the termination by thinning of a geological
layer is sometimes modeled by degenerate hexahedra with multiple vertices having the same coordinates. In the process of
constructing adaptive solutions of PDEs on quadrilateral and hexahedral meshes, local refinement of the mesh creates
degenerate elements that have 180� angles between faces. These issues motivate the development of discretization methods
suited to general polygonal and polyhedral meshes.

Various approaches to extend the FE methods to non-traditional elements (pyramids, polyhedra, etc.) have been devel-
oped over the last decade (see, e.g. [25,29,30,35,36]). The main challenge for these methods is the construction of basis func-
tions for a general polygonal element. This often requires extensive geometrical analysis. For instance, in [29] an auxiliary
simplicial partition is used in each polygonal element to simplify the construction of FE basis functions for this element.

MFD methods [33,13,15,14,11] combine the analytical power of FE methods with the flexibility provided by polygonal
and polyhedral meshes. Both methods try to preserve the fundamental properties of physical and mathematical models such
as conservation laws, solution symmetries and positivity and the fundamental identities and theorems of vector and tensor
calculus (e.g. Green’s identities). Contrary to the FE methods, the MFD methods use only a surface representation of the dis-
crete unknowns to build the stiffness and mass matrices. Since no extension inside the mesh element is required, practical
implementation of MFD methods is simple for polygonal and polyhedral meshes.

MFD methods have been successfully employed for solving diffusion [11,14,27], convection–diffusion [18], electromag-
netic [27] and elasticity [2] problems and for modeling fluid flows [1,16,31]. The original MFD methods were low-order
methods. Miscellaneous approaches were developed to build higher-order methods [32,6,26,4].

A posteriori error estimates are an important part of the development of MFD methods. A local error estimator for the
diffusion problem is presented, analyzed and tested in [3,8], while in [17] a post-processing methodology is introduced. Fi-
nally, we mention a few relevant finite volume discretization methods on polygonal and polyhedral meshes (see [20,23] and
references therein) which, similar to the FE and MFD methods, are designed to preserve important properties of continuum
equations.

In this paper we present a new MFD method for the Stokes problem on polygonal meshes. The derivation of the new meth-
od is based on the methodology proposed originally in [15] for diffusion problems. The formulation of the Stokes problem in-
volves a tensor viscosity coefficient so that the developed method may also be used to solve linear elasticity problems in the
displacement formulation. Note that a mixed stress–displacement formulation of the elasticity problem is developed in [2].

The developed MFD method is first-order accurate for the fluid velocity in a discrete H1 norm and for the pressure in the
L2 norm. In addition, whenever the coefficients of the fluid viscosity tensor are piecewise constant, the method results in
second-order convergence for the velocity variable in a discrete L2 norm. Note that we build a whole family of methods with
equivalent properties. For instance, on triangular meshes our family of methods contains the reduced P2 � P0 finite element
method [24,9]. A detailed convergence analysis of this family and the extension to three dimensions will be the topic for
future research [5].

The proposed MFD method belongs to the class of staggered mesh methods; the velocity unknowns are defined at mesh
vertices and on mesh edges while the pressure unknowns are defined on mesh elements. Other staggered discretizations for
Stokes and linear elasticity include a huge body of various FE and FV methods (see e.g. [24,9,12,21,10] and references
therein).

The paper is organized as follows. In Section 2, we discuss the variational form of the Stokes problem. In Section 3, we
present the new MFD method. In Section 4, we analyze the stability of the discretization. In Section 5, we illustrate the pro-
posed method with three numerical experiments.

2. Variational formulation for the Stokes equation

Let X be a polygonal domain with Lipschitz continuous boundary @X. Let us consider the incompressible Stokes equation
�2divðmDðuÞÞ ¼ F�rp

divðuÞ ¼ 0
in X;

�
ð1Þ
where u is the fluid velocity, p is the pressure, F is a given external force (e.g. gravity), m is a fourth-order symmetric positive
definite tensor fluid viscosity,
mklnm ¼ mlknm ¼ mnmkl ¼ mmnkl; ð2Þ
and DðuÞ is the symmetrized gradient,
2DðuÞ ¼ ruþ ðruÞT :
We impose Dirichlet boundary conditions on CD � @X and Neumann boundary conditions on CN ¼ @X n CD (both CD and CN

are a finite union of connected components)
uðxÞ ¼ gðxÞ for x 2 CD;

rðuðxÞ; pðxÞÞnðxÞ ¼ hðxÞ for x 2 CN;
ð3Þ
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where r is the stress tensor,
rðu; pÞ ¼ 2mDðuÞ � pI:
Remark 1. For simplicity, we assume that the measure of CD is positive, in order to have the uniqueness of the vector
variable u. Furthermore, note that, in the case CD ¼ @X,

� the pressure variable is defined up to a global constant and
� the boundary datum must be consistent with the incompressibility condition, i.e.
Z

@X
g � ndx ¼ 0;
where n is the unit outward normal to @X.

Next, we derive a variational formulation for problem (1)–(3). The class Xg of admissible velocity fields u is defined by
Xg :¼ fu 2 X : uðxÞ ¼ gðxÞ for x 2 CDg; ð4Þ
where X :¼ ðH1ðXÞÞ2. We do not require that the functions in Xg be incompressible (incompressibility is enforced by an addi-
tional constraint). We will also need a linear space X0 of variations in the admissible class Xg. It is defined by setting g ¼ 0 in
(4).

Multiplying the first equation in (1) by a test function v 2 X0, integrating by parts over X and using boundary conditions
(3) yield
2
Z

X
mDðuÞ : rv dx�

Z
X

pdivðvÞ dx ¼
Z

X
F � v dxþ

Z
CN

h � v dx 8v 2 X0: ð5Þ
Let us introduce the following notation:
Aðu;vÞ :¼
Z

X
ð2mDðuÞÞ : Dv dx; ð6Þ

Bðp;vÞ :¼
Z

X
pdivðvÞ dx; ð7Þ

LðvÞ :¼
Z

X
F � v dxþ

Z
CN

h � v dx: ð8Þ
Note that the bilinear form Aðu;vÞ is symmetric since rv can be replaced with DðvÞ, due to (2). In such a notation, Eq. (5)
takes the following form
Aðu;vÞ � Bðp;vÞ ¼ LðvÞ: ð9Þ
Now we multiply the incompressibility equation in (1) by q 2 L2ðXÞ and integrate over the domain X to get the variational
formulation:

Find a pair ðu; pÞ;u 2 Xg and p 2 L2ðXÞ, such that
Aðu;vÞ � Bðp;vÞ ¼ LðvÞ 8v 2 X0;

Bðq;uÞ ¼ 0 8q 2 L2ðXÞ:

(
ð10Þ
3. Discretization on polygons

Let Xh be a partition of the computational domain X into NðXhÞ polygons E. We assume that this partition is conformal,
i.e. intersection of two different elements E1 and E2 is either a few mesh points, or a few mesh edges (two adjacent elements
may share more than one edge) or empty. We allow Xh to contain non-convex and degenerate elements. We approximate
the coefficient m by a constant tensor inside each mesh element. The extension to the case of a tensor with variable coeffi-
cients will be studied in the future using the ideas developed for diffusion problems in [4].

Let us briefly describe the formal construction of our mimetic discretization. Note that the numerical approximation to
problem (10) requires to discretize scalar and vector functions, which are, respectively, elements of L2ðXÞ and ðH1ðXÞÞ2, the
bilinear forms Aðu;vÞ and Bðp;vÞ, and the linear functional LðvÞ.

We begin by introducing the degrees of freedom for scalar and vector functions
p; s 2 L2ðXÞ ! P ; S 2 Q h;

u; v 2 H1ðXÞ ! U; V 2 Xh;
ð11Þ
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that are used to discretize the bilinear forms and the linear functional mentioned above as follows
Fig. 1.
and arr
Aðu;vÞ ! VT AU;

Bðp;vÞ ! VT DT P;

LðvÞ ! VT L:

ð12Þ
Here, we anticipate that A is a symmetric semi-definite matrix with three null modes corresponding to the rigid body mo-
tions, one for rotation and two for translations.

These characteristics are directly exploited in the algorithm used to compute this matrix. The details of the construction
of A, D and L are presented in the following subsections.

Let Xh
g and Xh

0 denote the subsets of Xh that approximate Xg and X0, respectively. Our new mimetic discretization for the
Stokes problem reads as follows.

Find U 2 Xh
g and P 2 Q h, such that
VT AU � VT DT P ¼ VT L 8V 2 Xh
0;

UT DT S ¼ 0 8S 2 Q h:
This problem can be written in the matrix form:
V

S

� �T A �DT

�D 0

" #
U

P

� �
¼ VT L

0

" #
8V 2 Xh

0 and 8S 2 Q h: ð13Þ
In practice, we find it convenient to eliminate the degrees of freedom corresponding to the Dirichlet boundary conditions, c.f.
Section 3.5. This results in the saddle point problem:
A0 �DT
0

�D0 0

" #
U0

P

� �
¼

GU

GP

� �
; ð14Þ
where A0 and D0 are sub-matrices of A and D, respectively. Note that matrix A0 is symmetric and positive definite. Therefore,
a number of efficient iterative solvers, such as the preconditioned Lanzcos algorithm or other Krylov methods, are available
from the literature to solve problem (14).

3.1. Discretization of scalar and vector functions

Let us consider the sample element E shown in Fig. 1. We denote the number of its vertices byNðEÞ. Note that the number
of its edges is also NðEÞ. Let nEðxÞ be the unit outward normal to the boundary @E at the point x.

For scalar functions (e.g. pressure p), we specify one degree of freedom per element, pE. For instance, pE may be the aver-
age value of p over the element E. The local approximation space Q E has dimension one and is isomorphic to the space of
constant functions on E. The dimension of the global space Q h is equal to the number of mesh elements NðXhÞ.
Left picture introduces notations used through the paper. Right picture shows the degrees of freedom for pressure (square box) and velocity (circles
ows).
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Let us specify the degrees of freedom for vector functions such as the velocity u. To each vertex ai of a polygonal element
E, we assign two degrees of freedom that represent the value of u at ai:
Ux
i ; Uy

i

� �T
:¼ uðaiÞ; i ¼ 1; . . . ;NðEÞ:
To each edge ei of E, we assign one degree of freedom that represents the average flux of u through the edge:
Ue
i :¼ 1
jeij

Z
ei

uðsÞ � ni ds; ð15Þ
where ni is the restriction of nEðxÞ to edge ei.
The local space Xh

E is characterized by DðEÞ :¼ 3NðEÞ degrees of freedom for each polygonal element E. The dimension of
the global space Xh is the number of mesh edges plus twice the number of mesh vertices. The dimensions of both spaces Xh

g

and Xh
0 is equal to the dimension of Xh minus the number of Dirichlet edges and minus twice the number of Dirichlet points.

Let UE be the restriction of U 2 Xh to the element E,
UE ¼ Ux
1;U

y
1;U

e
1; Ux

2;U
y
2;U

e
2 ; . . . ; Ux

NðEÞ;U
y
NðEÞ;U

e
NðEÞ

� �T
: ð16Þ
In the next subsection, we will show that the space Xh
E is isomorphic to a specially designed space VE of vector functions. In

other words, for every UE in Xh
E , there exists a unique vector function uE in a certain approximation space VE that we will dis-

cuss in detail in Section 3.2.1. Note that Xh
E is also isomorphic to RDðEÞ, the linear space of real vectors of size DðEÞ.

3.2. Discretization of Aðu; vÞ

We reduce the discretization of the global bilinear form Aðu; vÞ to the discretization of the elemental bilinear forms
AEðuE; vEÞ which are defined for the elemental restrictions uE;vE in VE:
Aðu; vÞ :¼
X
E2Xh

AEðuE; vEÞ: ð17Þ
We remark that the decomposition in (17) is the usual assembly of the stiffness matrix in finite element methods. Let
UE; VE 2 Xh

E be the vector representations of uE;vE 2 VE. Then,
UT
E AE VE :¼ AEðuE; vEÞ ¼

Z
E

2mDðuEÞ : DðvEÞ dx:
The goal of this subsection is to present our new mimetic strategy for the calculation of the elemental matrices AE. To this
purpose, we first discuss the derivation of a computable form of AE, which is based on a block-diagonalization of this matrix.
Then, we propose an alternative but equivalent formulation that is easier to implement and computationally less expensive.

3.2.1. Divide and conquer strategy
So far, we have roughly followed the finite element setting. In such a framework, the next step would be the introduction

of a set of basis functions defined on each element E or, possibly, on a reference element bE. However, this step would be quite
challenging for a polygonal element E that has a general shape.

To avoid this problem, we use a different approach that is based on the following linear algebraic argument.
Let the columns of the square matrix TE form a new basis in Xh

E. Then, the elemental stiffness matrix is transformed as
follows:
eAE :¼ TT

EAETE: ð18Þ
In Section 3.2.2, we shall explicitly construct a transformation matrix TE such that matrix eAE is block-diagonal and takes
the form
eAE ¼
eA11

E 0

0 eA22
E

" #
; ð19Þ
where sub-matrix eA11
E is computable and sub-matrix gA22

E is an arbitrary symmetric and positive definite matrix that scales like
~A11

E with respect to the element size and m. After such block-diagonal matrices are set, matrix AE can be calculated as
AE ¼ T�T

E
~AET�1

E . An alternative but more efficient implementation is also described in Section 3.2.4.
The keys to the block-diagonal structure (19) are (i) a carefully selected decomposition of the approximation space,
VE :¼ VE;1 � VE;2; ð20Þ
where VE;1 and VE;2 are AE-orthogonal, and (ii) the P1-compatibility property that will be introduced in Section 3.2.2.
We define VE;1 as the space of linear vector functions over the element E, i.e. VE;1 :¼ ðP1ðEÞÞ2. This choice allows us to

obtain a numerical scheme that is consistent with all linear vector fields, a crucial property to achieve second-order
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convergence. On its turn, space VE;2 will be defined only partially in accordance with the fact that matrix eA22
E can be arbi-

trarily chosen. This freedom results in a family of methods, all of whose members show equivalent approximation properties.
Let f/ig

DðEÞ
i¼1 be the set of basis functions that we consider in VE.

� The first six members of this set are given by:
/1ðx; yÞ :¼
1
0

� �
; /2ðx; yÞ :¼ 1

2
y

�x

� �
; /3ðx; yÞ :¼

0
1

� �
;

/4ðx; yÞ :¼
x

0

� �
; /5ðx; yÞ :¼ 1

2
y

x

� �
; /6ðx; yÞ :¼

0
y

� �
;

ð21Þ
and form a basis for the subspace VE;1. Note that /1;/2;/3 span the entire space of rigid body motions, while /1 and /3 alone
span the space of translations.
� The functions /j for j ¼ 7; . . . ;DðEÞ form a basis for the subspace VE;2 and are chosen AE-orthogonal to VE;1, in order to

obtain the block-diagonal form shown in (19). Thus, there holds that
AEð/i; /jÞ ¼ 0; 1 6 i 6 6 < j 6 DðEÞ: ð22Þ
Note that the basis functions /j for j ¼ 7; . . . ;DðEÞ are to be defined only on the edges of E. This fact will allow us to rewrite
orthogonality condition (22) in a computable form, as pointed out in Section 3.2.3.
3.2.2. P1-compatibility property
Let E denote an element of the mesh, m be the constant tensor that approximates the fluid viscosity tensor on E and u1 be a

vector field that belongs to VE;1. We state the P1-compatibility property as
Z
E
mDðu1Þ : DðvEÞdx ¼

Z
@E
ðmDðu1Þ � nEÞ � vE ds 8vE 2 VE: ð23Þ
Identity (23) corresponds to an integration by parts and is the only consistency-type property that we require in the formu-
lation of the scalar product expressed by AE. As a consequence, this property implies that the calculation of the stiffness ma-
trix AE only requires to know vE on the edges of E. We make two additional assumptions on the approximation space VE. Let
ei be the edge of element E with vertices ai and aiþ1, c.f. Fig. 1. Then,

(A1) the restriction of vE � nE to ei, which is the normal component of vE along edge ei, is the quadratic function of the posi-
tion that is uniquely determined by the degrees of freedom at ai and aiþ1 and the flux degree-of-freedom Ve

i ;
(A2) the restriction of vE � tE to ei, which is the tangential component of vE along edge ei, is the linear function of the posi-

tion which is uniquely determined by the velocity degrees of freedom at the vertices ai and aiþ1.
These conditions imply the continuity of the discrete velocity across all mesh edges. Moreover, using the notation of
Fig. 1 and assumption (A2), we immediately have the following representation of the boundary integrals in (23) in
terms of the discrete degrees of freedom:
Z

ei

ð2mDðu1Þ � niÞ � vE ds ¼
Z

ei

ðc � niÞðvE � niÞdsþ
Z

ei

ðc � tiÞðvE � tiÞds

¼ ðc � niÞjeijVe
i þ ðc � tiÞ

jeij
2

Vx
i þ Vx

iþ1; Vy
i þ Vy

iþ1

� �T � ti; ð24Þ
where we have set c ¼ 2mDðu1Þ to ease notation, and ti is the unit vector parallel to ei.

3.2.3. Change of basis in Xh
E

Let TE be the transformation matrix that acts from the basis set f/igi to the natural basis of Xh
E , this latter being the basis

directly associated to the degrees of freedom. Hence,
TE ¼ fTE;i;jg; TE;i;j :¼ i-th degree of freedom of /j: ð25Þ
The first six columns of TE are uniquely determined by the choice of the basis functions (21).
For example, in accordance with the definition of the vector degrees of freedom given in (16), the column vectors Tj for

j ¼ 1; . . . ;6 are given by
Tj ¼ ð/jðx1; y1ÞÞ
x
; ð/jðx1; y1ÞÞ

y
; ð/jÞ

e
1; ð/jðx2; y2ÞÞ

x
; ð/jðx2; y2ÞÞ

y
; ð/jÞ

e
2; . . . ð/jðxNðEÞ; yNðEÞÞÞ

x
; ð/jðxNðEÞ; yNðEÞÞÞ

y
; ð/jÞ

e
NðEÞ

� �T
;

where ð/jðxk; ykÞÞ
x and ð/jðxk; ykÞÞ

y are the first and second components of the j-th basis function calculated at the k-th node,
c.f. Eq. (21), and ð/jÞ

e is the edge integral (15).
The remaining columns Tj for j > 6 are obtained by imposing the AE-orthogonality, c.f. Eq. (22), and the P1-compatibility

property, c.f. Eq. (23).
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To this purpose, we introduce the auxiliary vectors Rð/iÞ; i ¼ 1; . . . ;6, in RDðEÞ, which are such that
Rð/iÞ
T VE ¼

Z
@E
ðmDð/iÞ � nEÞ � vE ds 8VE 2 Xh

E: ð26Þ
The j-th entry of the column vector Rð/iÞ can be readily calculated by splitting the right-hand side integral of (26) into the
sum of all edge contributions and applying (24) to vector VE (and to the corresponding vector field vE) that runs through the
canonical basis vectors of RDðEÞ. As already observed after Eq. (21), the first three basis functions /1;/2 and /3, in VE corre-
spond to the rigid body motions. Therefore, Rð/1Þ ¼ Rð/2Þ ¼ Rð/3Þ ¼ 0, and only Rð/jÞ for j ¼ 4;5;6 must be explicitly
computed.

Since VE is arbitrary, the P1-compatibility property (23) gives
TT
i AE ¼ Rð/iÞ

T
; 1 6 i 6 6; ð27Þ
which makes it possible to rewrite orthogonality condition (22) as:
0 ¼ AEð/i; /jÞ ¼ Rð/iÞ
T Tj; 1 6 i 6 6 < j 6 DðEÞ: ð28Þ
Relation (28) provides only three conditions for the index values i ¼ 4;5;6, because Rð/iÞ ¼ 0 for i ¼ 1;2;3, while we have to
define DðEÞ � 6 basis vectors in Xh

E . To recover three additional conditions, we impose that
TT
i Tj ¼ 0 1 6 i 6 3and6 < j 6 DðEÞ: ð29Þ
Conditions (28) and (29) can be either imposed in a direct way through the Gram-Schmidt or the SVD orthogonalization
algorithms, or, as proposed in Section 3.2.4, through an orthogonal projection.

We now introduce a more compact notation, which will be useful here and in the analysis of Section 4. Let Ti::j be the
DðEÞ � ðj� iþ 1Þ matrix given by selecting the columns i; . . . ; j from TE:
Ti::j ¼ ½Ti; Tiþ1; . . . ; Tj�:
Hereafter, to simplify the notation, we shall also write D instead of DðEÞ. Using this notation, we may write T1::D instead of TE.
We introduce a similar notation for the matrices Ri::j, which are formed by the vectors Ri ¼ Rð/iÞ for i ¼ 1; . . . ;6. Let us define
RE :¼ R1::6 and summarize all the relations discussed so far:
R1::3 ¼ 0; ð30Þ
AET1::6 ¼ RE; ð31Þ
A11

E :¼ TT
1::6AET1::6 ¼ TT

1::6RE; ð32Þ
TT

7::DAET1::6 ¼ TT
7::DRE ¼ 0; ð33Þ

TT
7::DT1::3 ¼ 0: ð34Þ
Observe that the last ðD � 6Þ columns of TE can still be chosen mutually orthogonal and can be scaled arbitrarily. It will be
convenient to assume that
TT
7::DT7::D ¼ jEjID�6; ð35Þ
where ID�6 represents the identity matrix of size ðD � 6Þ. The columns of the basis transformation matrix TE are D linearly
independent vectors in RD thus ensuring that this matrix is non singular. This property is a direct consequence of the matrix
construction and is formally proven in the final lemma presented at the end of this subsection.

We are now left with the problem of constructing the matrix eA11
E and choosing the proper matrix eA22

E . The entries of the
6� 6 symmetric matrix eA11

E , defined by (32), can be computed directly using the basis functions (21) from formula (23).
Moreover, (30) implies that the corresponding entries of matrix eA11

E are zero, so that we obtain the 2� 2 block decomposi-
tion form
eA11
E ¼

0 0
0 eS11

E

� �
: ð36Þ
In general, eS11
E is a positive definite matrix for a positive definite tensor m, and becomes diagonal when m is a scalar field.

The matrix eA22
E can be any symmetric and positive definite matrix with eigenvalues close to the maximum eigenvalue ofeA11

E , thus providing us with a family of numerical methods with equivalent approximation properties. In practice, a reason-
able choice for eA22

E is the scalar matrix,
eA22
E ¼ kmaxðmÞjEjID�6; ð37Þ
where kmaxðmÞ is the maximum eigenvalue of m.
We conclude this subsection with a lemma that proves the invertibility of the matrix TE. This result establishes the well-

posedness of the previous construction because it guarantees that the vectors fTjgj with j ¼ 1; . . . ;D, i.e. the columns of the
matrix TE, are linearly independent and form a basis for Xh

E.
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Lemma 1. The matrix TE 2 RD�D is non singular.

Proof. The proof is by contradiction. Assume that matrix TE is singular. Then, there must exist a vector V–0, such that
TE V ¼ 0. By multiplying this equation by RT

E and using (31)–(33), we obtain
0 ¼ RT
ETEV ¼ ½RT

ET1::6;R
T
ET7::D�V ¼ eA11

E ½V1;V2; ::;V6�T ) eS11
E ½V4;V5;V6� ¼ 0: ð38Þ
Since eS11
E is positive definite, the above identity gives V4 ¼ V5 ¼ V6 ¼ 0. Due to the definitions of T1; T2; T3 and the orthog-

onality relations in (34) and (35), the columns fTjgj with j ¼ 1;2;3 and j ¼ 7;8; . . . ;D are linearly independent. Therefore,
a zero linear combination of these column vectors is possible only when all the coefficients of the linear combination are
zero, which implies that V ¼ 0. This fact contradicts the initial fact that V–0 and, hence, proves the assertion of the
lemma. h
3.2.4. Inexpensive construction of the stiffness matrix AE

The calculation of the matrix AE involves the inversion of the transformation matrix TE and three full matrix–matrix prod-
ucts, which all require OðD3Þ floating-point operations. To get an insight about these costs, note that, for instance, D ¼ 12 for
a quadrilateral element, thus producing a 12� 12 matrix TE. However, the complexity of the procedure described in Section
3.2.3 must be compared with the complexity of the iterative solvers for the saddle point problem (14). Thus, the cost of the
matrix construction is expected to be small (but not negligible) with respect to the global cost of the method.

In this subsection, we present a slight modification of the previously described procedure, that yields a more efficient
method for the calculation of AE. Property (32) implies that
RT
4::6T4::6 ¼ eS11

E :
Thus, the general form of the matrix AE that satisfies (27) is given by
AE ¼ R4::6ðeS11
E Þ
�1RT

4::6 þ PUEP; ð39Þ
where UE is an arbitrary symmetric positive definite matrix and P is the orthogonal projector,
P ¼ ID � T1::6ðTT
1::6T1::6Þ�1TT

1::6: ð40Þ
This new matrix AE belongs to the same family of matrices given by (18) and (19). Nonetheless, equations (39) and (40) only
require the inversion of the 3� 3 matrix eS11

E and the 6� 6 matrix TT
1�6T1�6, independently of the number of polygonal edges

and thus of the value of D. Moreover, for a scalar coefficient m, the matrix eS11
E has a very simple form with a negligible inver-

sion cost: eS11
E ¼ 2mjEjI3.

If we choose UE to be a scalar matrix, e.g. UE ¼ 2m jEjI6, formula (39) is simplified to
AE ¼
1

2mjEjR4::6RT
4::6 þ 2mjEjP: ð41Þ
The structure of the 6� 6 matrix TT
1::6T1::6 can be further simplified on Cartesian grids by shifting the coordinate system to the

center of mass of E. In this case, the vectors T1 and T3 (corresponding to /1 and /3, respectively) are orthogonal to the
remaining vectors and, after a suitable rearrangement of columns and rows, TT

1::6T1::6 becomes a block-diagonal matrix, thus
permitting a further reduction of the inversion cost.

Remark 2. The existence of the basis functions f/ig for each element E that produce a given matrix AE can be investigated
using the technique described in [14] for the diffusion problem.
3.3. Discretization of Bðp; vÞ

We reduce the discretization of the global bilinear forms Bðp; vÞ to the discretization of the elemental bilinear form
BEðpE; vEÞ through the assembly decomposition:
Bðp; vÞ :¼
X
E2Xh

BEðpE; vEÞ:
Since the pressure pE is approximated by a constant function on each polygonal element E, using the Gauss divergence the-
orem yields:
BEðpE; vEÞ 	
Z

E
pEdivðvEÞdx ¼ pE

Z
E

divðvEÞdx ¼ pE

Z
@E

vE � nE ds ¼ pE

X
ei2@E

Z
ei

vE � nE ds ¼ pE

X
ei2@E

jeijVe
i :
The arguments of the final summation are the fluxes through the edges of E, which belong to the set of degrees of freedom
introduced in Section 3.
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3.4. Discretization of LðvÞ

We rewrite LðvÞ as follows:
LðvÞ ¼
X
E2Xh

Z
E

F � v dxþ
X
e2CN

Z
e

h � v ds: ð42Þ
In Eq. (42), we approximate the volume integrals by assuming that F(x) is constant over each element E and the edge inte-
grals by assuming that h(x) is constant on each boundary edge e 2 CN. In the former case, we define a quadrature rule by
using the vertices of E as quadrature points and a suitable set of positive weights fxigi. For the weights xi, we use the same
coefficients of the formula that provides the center of gravity of E as the linear combination of the position vectors of the
vertices of the element. By construction, this quadrature rule is exact for linear functions. Applying this quadrature rule
to the first integral in the right-hand side of (42) yields
Z

E
F � vE dx 


XNðEÞ
i¼1

xi FðxEÞ � vEðaiÞ ¼
XNðEÞ
i¼1

xi Vx
i ;V

y
i

� �T � FðxEÞ; ð43Þ
where xE denotes the center of mass of E.
For the second integral in (42), we proceed as follows. Let ei be the i-th edge of the polygonal element E and xi be its mid-

point. By using the notation of Fig. 1, assumptions A1–A2 and integration formula (24), we obtain:
Z
ei

h � vE ds 
 hðxiÞ �
Z

ei

vE ds ¼ ðhðxiÞ � niÞ
Z

ei

vE � ni dsþ ðhðxiÞ � tiÞ
Z

ei

vE � ti ds

¼ ðhðxiÞ � niÞjeijVe
i þ ðhðxiÞ � tiÞ

jeij
2

Vx
i þ Vx

iþ1; Vy
i þ Vy

iþ1

� �T � ti: ð44Þ
3.5. Boundary conditions

In the variational formulation of Section 2, the Dirichlet boundary conditions manifest themselves through the admissible
class Xg, c.f. (4), while the Neumann boundary conditions only affect the linear functional LðvÞ, c.f. (5). In the corresponding
mimetic formulation, the Dirichlet boundary conditions appear through the definition of the class Xh

g and the space Xh
0.

In practical implementations, we directly prescribe the values of the degrees of freedom of the vertices and edges on the
boundary CD. Thus, for each boundary vertex ai 2 CD we set
Ux
i ;U

y
i

� �T
:¼ gðaiÞ; ð45Þ
and for each boundary edge ei 2 CD we set
Ue
i :¼ 1
jeij

Z
ei

gðsÞ � nE ds: ð46Þ
Let us denote by U0 and V0 the subsets of U and V, respectively, that does not contain the degrees of freedom specified by
the Dirichlet boundary conditions (45) and (46). Substituting (45) and (46) into (13) and eliminating the equations corre-
sponding to the Dirichlet degrees of freedom, we obtain the linear system given in (14) for U0 and P.

4. Stability analysis

In this section, we show that the above presented MFD discretization is stable. This property is important for demonstrat-
ing the solvability of the linear system and the convergence of the numerical method. The stability analysis for saddle point
problems [12] requires to prove two inequalities. The first inequality is the coercivity of the bilinear form Awith respect to a
natural norm in Xh (see Theorem 1). The second inequality is the inf-sup condition (see Theorem 2).

4.1. Coercivity of bilinear form A

The main result of this section is the coercivity of the bilinear form
Aðv;vÞ ¼ VT AV
in the approximation space X0 with respect to the natural norm defined by Eq. (49).

4.1.1. Natural norm in Xh
0

Since the shape functions /7; . . . ;/DðEÞ are not known inside E, we cannot use the H1-norm for the space Xh
0. Thus, our first

goal is to define an analog of the H1-norm that uses only known information about the space Xh
0. Due to assumptions (A1)

and (A2), for any VE 2 Xh
E , the corresponding vector function vE 2 VE is completely determined only on the boundary edges of
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E. Hence, we define a norm that depends on the derivatives of the functions along the edges of E and transform appropriately
under change of coordinates and coordinate scaling. Let us define the following seminorm on Xh

E:
jjjVEjjj2E :¼
XNðEÞ
i¼1

jeij
Z

ei

d
ds

vEðsÞ
	 
2

ds 8VE 2 Xh
E; ð47Þ
where d
ds is the tangential derivative along ei. Recall that the basis functions /1;/2;/3 represent the rigid motions of E and

correspond to the basis vectors T1; T2; T3 2 Xh
E. The natural local seminorm that vanishes on rigid body motions is given by
jjjVEjjjH;E :¼min
c2R3
jjjVE þ T1::3cjjjE 8VE 2 Xh

E: ð48Þ
In the above definition, we can neglect the contributions from /1 and /3, because the differentiation in (47) ignores constant
functions. Eventually, from (47), (48) we define the ‘‘broken” seminorm on the space Xh:
jjjV jjj2� :¼
X
E2Xh

jjjVEjjj2�;E: ð49Þ
This seminorm is a norm on the space Xh
0, since Xh

0 does not contain non-trivial rigid motions as shown in Lemma 3. The goal
of the next subsections is to prove the coercivity of the bilinear form A with respect to the norm jjj � jjj� in Xh

0.
We will use k � k to denote the standard Euclidean norm on Rm. Whenever m is different from D, we use the lower-case

letters v ;u and w to indicate vectors in Rm and introduce the following seminorm (which ignores the first three components
of a vector):
kvk2
H

:¼
Xm

i¼4

v2
i 8v 2 Rm; m > 3:
4.1.2. Mesh regularity assumptions
A few quite general mesh assumptions from [11] are required for the following analysis. We assume that there exists a

compatible decomposition Sh of the polygonal mesh Xh into triangles. Moreover, there exist two mesh independent numbers
N� 2 N and q� > 0, such that:

� every polygon E 2 Xh admits a decomposition ShjE made of less than N� triangles;
� for each triangle T 2 Sh, the ratio of the radius of the inscribed disk to the diameter of T is bounded from below by q�.

We do not need to build the decomposition Sh explicitly but only know that we can do it, i.e. this decomposition does
exist. The consequences of these mesh assumptions are:

� the number of edges NðEÞ of each polygon E is uniformly bounded;
� there exists a constant r� that depends only on N� and q�, such that it holds:
jeijP r�diamðEÞ and jEjP r�diamðEÞ2
for every edge ei of E.

4.1.3. Main result: coercivity of Aðv; vÞ
Hereafter, C;C1 and C2 are positive constants that are possibly different at each occurrence. These constants are indepen-

dent of the mesh but may depend on the tensor m and the shape regularity parameters N�;q� and r�, introduced in Section
4.1.2.

Lemma 2. The symmetric 3� 3 matrix eS11
E , introduced in (36), satisfies
C1 jEj kvk2
6 vT eS11

E v 6 C2 jEj kvk2 8v 2 R3: ð50Þ
Proof. Note that Dð/4Þ; Dð/5Þ; Dð/6Þ are constant tensors. With a scaling argument, we get
ðeS11
E Þði�3Þðj�3Þ ¼ 2

Z
E
mDð/iÞ : Dð/jÞdx ¼ 2jEjðmDð/iÞ : Dð/jÞÞ i; j ¼ 4;5;6: ð51Þ
The result follows from the fact that m is a positive definite tensor. h

As a consequence of the scaling choice (37) we also have
C1jEj kvk2
6 vT eA22

E v 6 C2jEj kvk2 8v 2 RD�6: ð52Þ
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By definition, first using (18), (19) and then (36) we infer that
VT
EAEVE ¼ wT eAEw ¼ uT eA11

E uþ vT eA22
E v ¼ ðu4;u5;u6ÞeS11

E ðu4; u5; u6ÞT þ vT eA22
E v:
From this equality, using Lemma 2 and (52 it immediately follows that
C1jEjðkuk2
H
þ kvk2Þ 6 VT

EAEVE 6 C2jEjðkuk2
H
þ kvk2Þ ð53Þ
for all VE 2 Xh
E;u 2 R6 and v 2 RD�6, such that
VE ¼ T½uT ;vT �T ¼ T1::6uþ T7::Dv : ð54Þ
We can now present the following result.

Proposition 1. There exists a positive constant aE, dependent only on the tensor m and the shape regularity parameters N�;q� and
r� introduced in Section 4.1.2, such that
AEðvE;vEÞ ¼ VT
EAEVE P aEjjjVEjjj2�;E 8VE 2 Xh

E:
Proof. Let VE 2 Xh
E 	 RD. Since the matrix T is invertible, for each VE, there exist two unique vectors u 2 R6 and v 2 RD�6,

such that
VE ¼ T½uT ;vT �T ¼ T1:6uþ T7:Dv
Due to the AE-orthogonality condition (33) we have the following decomposition
VT
EAEVE ¼ uTðTT

1::6AET1::6Þuþ vTðTT
7::DAET1::DÞv ¼ uT eA11

E uþ vT eA22
E v : ð55Þ
The definition of matrix eA11
E and scaling assumption (35) imply that
uT eA11
E u P CjEjkuk2

H
and vT eA22

E v P CjEjkvk2 ð56Þ
Since all the derivatives of /jðj ¼ 4;5;6Þ are bounded by 1, and jeij2 6 CjEj, we get
jjjT1::6ujjj2�;E 6 C
X6

j¼4

u2
j

XD
i¼1

jeij2 6 CjEjkuk2
H
: ð57Þ
We now observe that, for any WE 2 Xh
E , the definition of the degrees of freedom in Section 3.1 implies that
kwEk2
L1ð@EÞ 6 CkWEk2 8WE 2 Xh

E; ð58Þ
where wE is the associated function to WE. Since the restriction of wE to the boundary is a piecewise polynomial function, an
edge-by-edge standard inverse inequality gives
jjjWEjjj2�;E 6 jjjWEjjj2E ¼
XNðEÞ
i¼1

jeij
Z

ei

d
ds

wEðsÞ
	 
2

ds 6 CkwEk2
L1ð@EÞ: ð59Þ
Using (59), (58) and recalling the scaling assumption (35) yields
jjjT7::Dv jjj2�;E 6 CkT7::Dvk2 ¼ CjEjkvk2
: ð60Þ
Thus, combining (55)–(57) with (60) and using the triangle inequality, we obtain the desired estimate:
VT
EAEVE P CðjjjT1::6ujjj2�;E þ jjjT7::Dvjjj2�;EÞP

C
2
jjjVEjjj2�;E 8VE 2 Xh

E:
Taking aE ¼ C=2, completes the proof. h

The bilinear form AEðvE;vEÞ is also h-uniformly continuous with respect to the same norm jjj � jjj
H

. This result is proven in
Proposition 2 in the Appendix.

Lemma 3. The seminorm jjj � jjj�, defined by (49), is a norm on the space Xh
0 if Xh is a connected partition of the domain X.

Proof. Clearly, jjj � jjj� is a seminorm on Xh
0. Thus, it only remains to show that for any V 2 Xh

0; jjjV jjj� ¼ 0 implies that VE ¼ 0.
Let us first observe that VE ¼ 0 on the whole element E when VE is a rigid motion on the element E and VE ¼ 0 on one of the
edges e � @E. In such a case, it also follows that VE ¼ 0 on all the other edges of the element E.

Now, let us consider a vector V 2 Xh
0 such that jjjV jjj� ¼ 0. From definition (49) it follows that jjjVEjjj�;E ¼ 0 for all the

elements E 2 Xh. In view of (48) and (47), V represents the rigid body motions on each element E, and VE ¼ 0 in each E having
an edge on the Dirichlet boundary CD, which is assumed non-empty. Since V is continuous across mesh elements and Xh is a
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connected partition of the domain X, we can propagate the above argument everywhere starting from the edges of the
Dirichlet boundary CD. h

Theorem 1. Let Xh be a connected partition. Then, there exists a positive constant a, dependent only on aE, such that
VT AV P a jjjV jjj2� 8V 2 Xh: ð61Þ
Proof. Let E be an element of the partition Xh and aE be the constant introduced in Proposition 1. We define a ¼minE2XhaE.
Then, using Proposition 1 and recalling (49), we infer that
VT AV ¼
X
E2Xh

VT
EAEVE P

X
E2Xh

aEjjjVEjjj2�;E P a
X
E2Xh

jjjVEjjj2�;E ¼ ajjjV jjj2� : ð62Þ
This proves the theorem. h

Remark 3. It may be interesting to observe that Proposition 1 allows also to prove a coercivity result in the L1 norm; the
proof can be found in [7]. If meas ðCDÞ > 0 then
Aðv;vÞ ¼ VT AV P
C

lnð2þ 1=hÞ kVk
2
1 8V 2 Xh; ð63Þ
where C is independent of h; k � k1 indicates the maximum norm on vectors, and V is the vector representation of v.
4.2. Inf-sup condition

In the following theorem we briefly sketch the proof of the inf-sup condition (the second condition required for the anal-
ysis of the stability).

Theorem 2. There exists a positive constant b (independent of h), such that for all S 2 Qh (and the associated piecewise constant
function s) there exists V 2 Xh

0 (and the associated piecewise regular function v), such that
Bðs;vÞP b
X
E2Xh

jEj jsEj2
 !1

2

and jjjV jjj� 6 1: ð64Þ
Proof. Due to the well known inf-sup condition [12] for the continuous problem, for any s 2 L2
0ðXÞ there exists ~v 2 X0 and a

positive constant b0 (independent of s), such that
Bðs; ~vÞP b0kskL2ðXÞ ¼ b0
X
E2Xh

jEj jsEj2
 !1

2

and k~vkH1ðXÞ 6 1: ð65Þ
Let ~vc be the piecewise linear Clément interpolation [19] of ~v on the sub-mesh Sh. Such an interpolation satisfies the bound
k~vckH1ðXÞ 6 Ck~vkH1ðXÞ 6 C: ð66Þ
We define V 2 Xh
0 (and the related v) on each element E by
Vx
i ;V

y
i

� �
¼ ~vcðaiÞ i ¼ 1; . . . ;NðEÞ

Ve
i ¼

1
jeij

Z
ei

~vðsÞ � ne ds i ¼ 1; . . . ;NðEÞ:
ð67Þ
Due to (67)2 and the definition of B it is easy to check that
Bðs;vÞ ¼
X
E2Xh

sE

X
ei2@E

Z
ei

~v � ne ds ¼
X
E2Xh

sE

Z
E

divð~vÞdx ¼ Bðs; ~vÞ
which together with the first property in (65) immediately implies the first part of (64). The second bound in (64) follows
with a scaling argument and recalling (66). h
5. Numerical experiments

To measure the quality of the numerical solution, we use the two mesh-dependent L2 norms
jjjV jjjX ¼
X
E2Xh

jEjVT
EVE

24 351=2

and jjjPjjjQ ¼
X
E2Xh

jEjP2
E

24 351=2

;



L. Beirão da Veiga et al. / Journal of Computational Physics 228 (2009) 7215–7232 7227
and the one H1-type norm
jjjV jjj2 :¼
X
E2Xh

jjjVEjjj2E : ð68Þ
Note that we use the stronger norm (68) instead of norm (49) that appears in Theorem 1 because the first norm is simpler to
compute and, due to the boundary conditions, is essentially equivalent to the second one.

To solve the saddle point problem (14), we use the iterative solvers with block-diagonal preconditioners of the form
H0 0
0 M

� �
;

where H0 is a preconditioner for the matrix A0 and M0 is the diagonal mass matrix with areas jEj on the diagonal. To achieve a
mesh independent convergence of the iterative process, the matrix H0 must be spectrally equivalent to A0. We have verified
this for small mesh resolutions and H0 ¼ A�1

0 . However, we have not achieved spectral equivalence with either the W-cycle of
the algebraic multigrid [34] or the second-order accurate incomplete LU factorization [28].

5.1. Random quadrilateral meshes

Let X be a unit square and m ¼ 1=2. We impose the Dirichlet boundary conditions on three sides of the unit square and the
Neumann boundary condition of the remaining side. These conditions are chosen such that the exact solution is
uðx; yÞ ¼ y3 þ x
x3 � y

" #
; pðx; yÞ ¼ 3xy� :75: ð69Þ
We consider a sequence of randomly perturbed quadrilateral meshes (see Fig. 2). A randomly perturbed mesh is built from a
square mesh with mesh size h ¼ 1=n by relocating each interior mesh node a to a random position inside a square box. The
box is centered at a, its sides are aligned with the coordinate axis, and its size is h=2.

The convergence analysis on the sequence of randomly perturbed meshes is the most challenging test for any discretiza-
tion method. Fig. 3 shows the second-order convergence rate for the discrete L2 norm of the velocity error and the first-order
for the discrete L2 norm of the pressure error and the discrete H1 norm (68) of the velocity error.

5.2. Polygonal meshes

Let X be, again, a unit square and m ¼ 1=2. We consider the Dirichlet boundary value problem with the exact solution
uðx; yÞ ¼ exþy 1
�1

� �
; pðx; yÞ ¼ 0:
Contrary to (69) this solution results in a non-zero right-hand side.
We study convergence of the method on a sequence of polygonal meshes. A polygonal mesh (see Fig. 2) is built in two

steps. First, we generate the Voronoi tessellation for the set of points ðxi;j; yi;jÞ given by
Fig. 2. A sample 15� 15 quadrilateral mesh with randomly perturbed vertices and a sample polygonal mesh.



Fig. 3. Left picture shows the streamlines for the discrete solution on the finest mesh. Right picture shows graphs of the mesh-dependent L2 and H1 norms
of the errors. The velocity graphs are marked by diamonds and squares (blue lines) and the pressure graph is marked by circles (red line). (For interpretation
of the references in color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Graphs (left is for m that is a scalar and right is for m that is a tensor) of the mesh-dependent L2 and H1 norms of the errors. The velocity graphs are
marked by diamonds and squares (blue lines) and the pressure graphs are marked by circles (red lines). The average slopes of the error for p are 1.70 and
1.67, respectively. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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xi;j ¼ ni þ 0:1 sinð2pniÞ sinð2pgjÞ; i ¼ 0; . . . ; n;

yi;j ¼ gj þ 0:1 sinð2pniÞ sinð2pgjÞ; j ¼ 0; . . . ;n;
where ni ¼ ih;gj ¼ jh and h ¼ 1=n. Second, we move each interior mesh node a to the center of mass of a triangle formed by
the centers of three Voronoi cells sharing a.

As shown in Fig. 4, we observe the second-order convergence rate for the discrete L2 norm of the velocity error. Super-
convergence is observed for the discrete H1 norm of the velocity error (of order 1.6) and the discrete L2 norm of the pressure
error (of order 1.7). This probably reflects the fact that the sequence of polygonal meshes has been built using a smooth map.

5.3. Polygonal meshes and tensor coefficients

Let us consider the previous example but replace the constant viscosity m by a symmetric fourth-order tensor m satisfying
(2). Let e ¼ DðuÞ. Using the reduced Voigt notation, the symmetric tensor is defined by six independent components:



Fig. 5. Left picture shows the locally refined mesh after three adaptive iterations. Right picture shows streamlines of the discrete solution on the most
refined mesh.

Table 1
Convergence on a sequence of locally refined meshes.

NðXhÞ jjjUex � UjjjX jjjUex � Ujjj� jjjPex � PjjjQ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
jPex � Pj2xdV

q
256 4.47e�2 6.04e�1 2.47e�1 4.80e�2
472 2.56e�2 7.04e�1 2.48e�1 3.53e�2
928 1.46e�2 8.06e�1 2.47e�1 2.53e�2
1924 8.06e�3 9.01e�1 2.47e�1 1.74e�2
3868 4.45e�3 1.02e�0 2.47e�1 1.24e�2
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rxx

ryy

rxy

264
375 ¼ 2

m11 m12 m13

m12 m22 m23

m13 m33 m33

264
375 exx

eyy

exy

264
375� p

p

0

264
375:
This problem is an intermediate step towards the displacement formulation of a linear elasticity problem. Therefore, we set
m11 ¼ m22 ¼ kþ 2l; m12 ¼ k and m33 ¼ 4l, all other coefficients are then equal to zero. The anisotropic tensor is obtained by
setting k ¼ 5 and l ¼ 1=2.

The right picture in Fig. 4 shows the second-order convergence rate for the discrete H1 norm of the velocity error. Again,
slight superconvergence is observed for the other two errors. Comparing the two pictures in Fig. 4, we see that the effect of
the tensor anisotropy is mild. All errors are roughly twice bigger than that for the scalar coefficient m.

5.4. Locally refined meshes

Let X be again the unit square centered at the origin and m ¼ 1. We consider the Dirichlet boundary value problem with
the point force F ¼ ð�dð0;0Þ;0ÞT . The exact solution is
uðx; yÞ ¼ 1
8p

1þ logðx2 þ y2Þ þ 2y2

x2þy2

�2xy
x2þy2

24 35; pðx; yÞ ¼ �4x
x2 þ y2 : ð70Þ
We study convergence of the method on a sequence of locally refined meshes. The sequence starts with the uniform
square 16� 16 mesh. The singular point force is approximated by a piecewise constant function with unit integral. On each
mesh in the sequence, this function equals to zero almost everywhere except in four square cells in the middle of the domain.
The mesh refinement is based on a simple error indicator – sum of pressure jumps across mesh edges. The error threshold for
mesh refinement is the average value of this indicator.

Fig. 5 indicates strong refinement towards the domain center where the solution is singular. Since p is not in L2ðXÞ, we
cannot expect convergence for the discrete L2 norm of the pressure error, see Table 1. Clearly, this is not a failure of the meth-
od but an unavoidable consequence of the problem. For the same reason, the discrete H1 norm of the velocity error does not
converge to zero. However, convergence rate for the discrete L2 norm of the velocity error is 1.7. As a test whether the error
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in pressure (i) is localized around the singularity and (ii) converges in some (weighted) norm weaker than L2 norm we added
the last column to the Table 1, which showed 0.5 rate of convergence. The linear regression method has been used to esti-

mate these error reduction rates with respect to the effective mesh size heff ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðXhÞ

q
.

6. Conclusions

We developed a new stable MFD method for the Stokes problem. We presented a number of numerical experiments dem-
onstrating the second-order convergence for the velocity variable and the first-order convergence for the pressure variable.
The experiments were done on randomly perturbed quadrilateral, general polygonal and locally refined square meshes
and demonstrated method’s ability to handle irregular and unstructured meshes.

The new MFD method was derived for tensor viscosity coefficients, thus, allowing to use the method for the problems of
linear elasticity in the displacement formulation. The numerical experiments with anisotropic tensor coefficients on unstruc-
tured polygonal meshes demonstrated the same order of convergence as in the case of scalar coefficients. The errors were
about twice the size of the errors in the case of the scalar coefficients, which is a rather mild effect.

The key difference between the MFD and FE methods is in the definition of the approximation spaces and, henceforth, in
the process of constructing mass and stiffness matrices. FE method relies on explicit construction of basis functions for the
approximation spaces everywhere inside mesh elements which may require extensive analysis of geometry. MFD method
uses only the surface representation of discrete functions. Since no extension inside mesh elements is required, practical
implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements.
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Appendix A

In Proposition 1 we proved the coercivity of the local bilinear forms AE with respect to the seminorm (48). In this section
we prove that the local bilinear forms are bounded with respect to the same seminorm, thus showing that a complete equiv-
alence holds. This result, although not fundamental for stability, is important for the convergence of the method and the con-
ditioning of the resulting linear system. We need to start with a preliminary lemma.

Lemma 4. For all VE 2 Xh
E

min
c2R3
kVE þ T1::3 ck 6 CjjjVEjjj�;E: ð71Þ
Proof. From the definition of the degrees of freedom of eV E 2 Xh
E we have
keV Ek 6 Ck~vEkL1ð@EÞ: ð72Þ

Since /1 and /3 span the space of all constant vector fields on E, a simple integration over the edge ei � @E gives
min
c1 ;c32R

k~vE þ c1/1 þ c3/3k
2
L1ðeiÞ 6

Z
ei

d
ds

~vEðsÞ
���� ����ds

 !2

6 Cjeij
Z

ei

d
ds

~vEðsÞ
	 
2

ds: ð73Þ
Combine (72) with (73), taken over all edges ei � @E, and use the definition of the jjj � jjjE-norm,
min
c1 ;c32R

keV E þ c1T1 þ c3T3k 6 C min
c1 ;c32R

k~vE þ c1/1 þ c3/3kL1ð@EÞ 6 C
XNðEÞ
i¼1

jeij
Z

ei

d
ds

~vEðsÞ
	 
2

ds ¼ CjjjeV EjjjE: ð74Þ
The result follows from (74) with eV E ¼ VE þ c2T3, taking a minimum over c2, and applying the definition of the jjj � jjj�;E-norm,
min
c2R3
kVE þ T1::3 ck 6 min

c22R
ðmin

c1 ;c32R
kVE þ c1T1 þ c2T2 þ c3T3kÞ 6 C min

c22R
jjjVE þ c2T3jjjE ¼ CjjjVEjjjH;E: �
Proposition 2. There exists a positive constant CE (depending only on the tensor m and the geometric constants in Section 4.1.2),
such that
AEðvE;vEÞ ¼ VT
EAEVE 6 CEjjjVEjjj2�;E 8VE 2 Xh

E:
Proof. Using (54) and the relations (32) and (33) we have
RT
EVE ¼ RT

ET1::6uþ RT
ET7::Dv ¼ eA11

E u: ð75Þ
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First, due to (36) and Lemma 2, then using (75), we obtain
kuk2
H
6 CjEj�1uT eA11

E u ¼ CjEj�1uT RT
EVE: ð76Þ
Since the first three components of RT
EVE are zeros, using the Cauchy-Schwartz inequality, applied to (76), gives
kuk2
H
6 CjEj�1kuk

H
kRT

EVEkH
ð77Þ
which immediately implies
kuk
H
6 CjEj�1kRT

EVEk: ð78Þ
Due to the mesh assumptions in Section 4.1.2 and the definition in (26), it is easy to check that
kRT
EWEk 6 CjEj1=2kWEk 8WE 2 Xh

E: ð79Þ
Properties (36) and (32) imply that RT
ETj ¼ 0 for j ¼ 1;2;3. Therefore, applying (79) and afterwards Lemma 4, we get
kRT
EVEk ¼min

c2R3
kRT

EðVE þ T1::3cÞk 6 CjEj1=2 min
c2R3
kVE þ T1::3ck 6 CjEj1=2jjjVEjjjH;E: ð80Þ
The bounds (78) and (80) give
jjjVEjjjH;E P bEjEj
1=2kuk

H
ð81Þ
where bE is a jEj-uniformly positive constant.
Let c1 and c2 be two reals, such that 0 < c1 þ c2 ¼ 1 (exact definition will follow in (84)). We now write, using (81) and

(54) and a triangle inequality,
jjjVEjjjH;E ¼ c1jjjVEjjj�;E þ c2jjjVEjjjH;E P c1bEjEj
1=2kuk

H
þ c2jjjT1::6uþ T7::Dv jjj�;E:

P c1bEjEj
1=2kuk

H
� c2jjjT1::6ujjj�;E þ c2jjjT7::Dv jjj�;E: ð82Þ
From bounds (57) and (82) we infer
jjjVEjjjH;E P ðc1bE � c2C�ÞjEj1=2kuk
H
þ c2jjjT7::Dv jjj�;E ð83Þ
where by C� we labeled the square root of the constant in (57). Making the choice
c1 ¼
1þ C�

1þ bE þ C�
and c2 ¼

bE

1þ bE þ C�
; ð84Þ
the bound (83) gives
jjjVEjjjH;E P a0EðjEj
1=2kuk

H
þ jjjT7::Dvjjj�;EÞ; ð85Þ
where a0E ¼
bE

1þbEþC�
is a jEj-uniform positive constant. First, due to (35), then using the orthogonality relation (34) and finally

applying Lemma 4, we get
jEj1=2kvk ¼ kT7::Dvk ¼min
c2R3
kT7::Dv þ T1::3ck 6 CjjjT7::Dvjjj�;E: ð86Þ
The result follows, combining (85), (86) and the equivalence (53). h
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